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1 Period doubling route to chaos

Reference: Feigenbaum [1], Schuster [2]

We now study the “routes” or “scenarios” towards chaos.

We ask: How does the transition from periodic to strange attractor occur?

The question is analogous to the study of phase transitions: How does a solid
become a melt; or a liquid become a gas?

We shall see that, just as in the study of phase transitions, there are universal
ways in which systems become chaotic.

There are three universal routes:
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• Period doubling

• Intermittency

• Quasiperiodicity

We shall focus the majority of our attention on period doubling.

1.1 Instability of a limit cycle

To analyze how a periodic regime may lose its stability, consider the Poincaré
section:

x
0

x
1

x
2

The periodic regime is linearly unstable if

|~x1 − ~x0| < |~x2 − ~x1| < . . .

or
|δ~x1| < |δ~x2| < . . .

Recall that, to first order, a Poincaré map T in the neighborhood of ~x0 is
described by the Floquet matrix

Mij =
∂Ti
∂Xj

.

In a periodic regime,
~x(t+ τ) = ~x(t).

But the mapping T sends

~x0 + δ~x→ ~x0 +Mδ~x.
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Thus stability depends on the 2 (possibly complex) eigenvalues λi of M .

If |λi| > 1, the fixed point is unstable.

There are three ways in which |λi| > 1:

λi

λiRe 

Im 

+1−1

1. λ = 1 + ε, ε real, ε > 0. δ~x is amplified is in the same direction:

x
2

x
4x

3x
1

This transition is associated with Type 1 intermittency.

2. λ = −(1 + ε). δ~x is amplified in alternating directions:

0
xx

1
x

2
x

3

This transition is associated with period doubling.

3. λ = α± iβ = (1 + ε)e±iγ. |δ~x| is amplified, δ~x is rotated:

x
0

1

2

34

γ
γγ

This transition is associated with quasiperiodicity.

In each of these cases, nonlinear effects eventually cause the instability to
saturate.
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Let’s look more closely at the second case, λ ' −1.

Just before the transition, λ = −(1− ε), ε > 0.

Assume the Poincaré section goes through x = −0. Then an initial pertur-
bation x0 is damped with alternating sign:

x
2 0

xx
1

x
3

0

Now vary the control parameter such that λ = −1. The iterations no longer
converge:

x
1 0

x

x
2x

3

0

We see that a new cycle has appeared with period twice that of the original
cycle through x = 0.

This is a period doubling bifurcation.

1.2 Logistic map

We now focus on the simplest possible system that exhibits period doubling.

In essence, we set aside n-dimensional (n ≥ 3) trajectories and focus only on
the Poincaré section and the eigenvector whose eigenvalue crosses (−1).

Thus we look at discrete intervals T , 2T , 3T . . . and study the iterates of a
transformation on an axis.

We therefore study first return maps

xj+1 = f(xj)

and shall argue that these maps are highly relevant to n-dimensional flows,
and even real fluids.

The model we study is a discrete form of the logistic equation we looked at
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very early in term:
dN

dt
= rN

(
1− N

K

)
.

Now imagine that we care only how the population N changes from, say, year
to year, and we take Nj to be the population in the jth year.

Then the differential equation becomes the difference equation

Nj+1 −Nj = rNj

(
1− Nj

K

)
,

where the per capita growth rate r is now dimensionless. Rearranging, we
obtain

Nj+1 = (1 + r)Nj −
r

K
N 2
j .

Now rescale the populations to the new variable

xj =
r/K

1 + r
Nj,

which yields
(1 + r)xj+1 = (1 + r)2xj − (1 + r)2x2

j .

Setting
4µ = 1 + r

we obtain the logistic map

xj+1 = 4µxj(1− xj),

which you will recognize from our first problem set.

1.3 Fixed points and stability

We seek the long-term dependence of xj on the control parameter µ. Re-
markably, we shall see that µ plays a role not unlike that of the Rayleigh
number in thermal convection.

So that 0 < xj < 1, we consider the range

0 < µ < 1.
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Recall that we have already discussed the graphical interpretation of such
maps. Below is a sketch for µ = 0.7:

f(x0) =

x0 x1

x1

1

1

x

f(x)

f(x)

1−1/(4µ)0

The fixed points solve

x∗ = f(x∗) = 4µx∗(1− x∗),
which yields

x∗ = 0 and x∗ = 1− 1

4µ
,

where the second fixed point exists only for µ > 1/4.

Recall that stability requires

|f ′(x∗)| < 1 =⇒ |4µ(1− 2x∗)| < 1.

The stability condition for x∗ = 0 is therefore

µ < 1/4.

The non-trivial fixed point, x∗ = 1− 1/(4µ), is stable for

1/4 < µ < 3/4.

Here’s a graph of x∗ for 0 < µ < 3/4:

µ0 1/4 3/4

x*=0

1

x*=1−1/(4µ)

6



1.4 Period doubling bifurcations

What happens for µ > 3/4?

At µ = 3/4, x∗ = 1 − 1/(4µ) is marginally stable. Just beyond this point,
the period of the asymptotic iterates doubles:

x
1
* 1

1

x

f(x)

x
2
*

Let’s examine this transition more closely. First, look at both f(x) and
f 2(x) = f

(
f(x)

)
just before the transition, at µ = 0.7.

Feigenbaum [1], Fig. 2

• Since f(x) is symmetric about x = 1/2, so is
f 2(x).

• If x∗ is a fixed point of f(x), x∗ is also a fixed
point of f 2(x).
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We shall see that period doubling depends on the relationship of the slope
of f 2(x∗) to the slope of f(x∗). The two slopes are related by the chain rule.
By definition,

x1 = f(x0), x2 = f(x1) =⇒ x2 = f 2(x0).

Using the chain rule,

f 2′(x0) =
d

dx
f
(
f(x)

)∣∣
x0

= f ′(x0) f
′(f(x0)

)
= f ′(x0) f

′(x1)

Thus, in general,

fn′(x0) = f ′(x0) f
′(x1) . . . f

′(xn−1). (1)

Now, suppose x0 = x∗, a fixed point of f . Then

x1 = x0 = x∗

and
f 2′(x∗) = f ′(x∗) f ′(x∗) = |f ′(x∗)|2.

For the example of µ < 3/4,

|f ′(x∗)| < 1 =⇒ |f 2′(x∗)| < 1.

Moreover, if we start at x0 = 1/2, the extremum of f , then equation (1)
shows that

f ′(1/2) = 0 =⇒ f 2′(1/2) = 0

=⇒ x = 1/2 is an extremum of f 2.

Equation (1) also shows us that f 2 has an extremum at the x0 that iterates,
under f , to x = 1/2. These inverses of x = 1/2 are indicated on the figure
for µ = 0.7.
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Feigenbaum, Fig. 3, µ = 0.75.

At the transition where µ = 3/4, we have

f ′(x∗) = −1 =⇒ f 2(x∗) = 1.

Therefore f 2(x∗) is tangent to the identity map.

Feigenbaum, Fig. 4, µ = 0.785.

Just after the transition, where µ > 3/4, the peaks of
f 2 increase, the minimum decreases, and

|f ′(x∗)| > 1 =⇒ |f 2′(x∗)| > 1.

f 2 develops 2 new fixed points, x∗1 and x∗2, such that

x∗1 = f(x∗2), x∗2 = f(x∗1).

We thus find a cycle of period 2. The cycle is stable
because

|f 2′(x∗1)| < 1 and |f 2′(x∗2)| < 1.
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Importantly, the slopes at the fixed points of f 2 are equal:

f 2′(x∗1) = f 2′(x∗2).

This results trivially from equation (1), since the period-2 oscillation gives

f 2′(x∗1) = f ′(x∗1) f
′(x∗2) = f ′(x∗2) f

′(x∗1) = f 2′(x∗2).

In general, if x∗1, x
∗
2, . . . , x∗n is a cycle of period n, such that

x∗r+1 = f(x∗r), r = 1, 2, . . . , n− 1

and x∗1 = f(x∗n)

then each x∗r is a fixed point of fn:

x∗r = fn(x∗r), r = 1, 2, . . . , n

and the slopes fn′(x∗r) are all equal:

fn′(x∗r) = f ′(x∗1) f
′(x∗2) . . . f

′(x∗n), r = 1, 2, . . . , n.

This slope equality is a crucial observation:

• Just as the sole fixed point x∗ of f(x) gives rise to 2 stable fixed points
x∗1 and x∗2 of f 2(x) as µ increases past µ = 3/4, both x∗1 and x∗2 give rise
to 2 stable fixed points of f 4(x) = f 2

(
f 2(x)

)
as µ increases still further.

• The period doubling bifurcation derives from the equality of the fixed
points—because each fixed point goes unstable for the same µ.

We thus perceive a sequence of bifurcations at increasing values of µ.

At µ = µ1 = 3/4, there is a transition to a cycle of period 21.

Eventually, µ = µ̄1, where the 21-cycle is superstable, i.e.,

f 2′(x∗1) = f 2′(x∗2) = 0.

At µ = µ2, the 2-cycle bifurcates to a 22 = 4 cycle, and is superstable at
µ = µ̄2.
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We thus perceive the sequence

µ1 < µ̄1 < µ2 < µ̄2 < µ3 < . . .

where

• µn = value of µ at transition to a cycle of period 2n.

• µ̄n = value of µ where 2n cycle is superstable.
Note that one of the superstable fixed points is always at x = 1/2.

µ = µ̄1, superstable 2-cycle µ = µ2, transition to period 4 µ = µ̄2, superstable 4-cycle

(Feigenbaum[1], Fig. 5). (Feigenbaum[1], Fig. 6). (Feigenbaum[1], Fig. 7).

Note that in the case µ = µ̄2, we consider the fundamental function to be f2,
and its doubling to be f 4 = f 2(f 2).

In general, we are concerned with the functional compositions

f 2n+1

= f 2n
(
f 2n
)
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Cycles of period 2n+1 are always born from the instability of the fixed points
of cycles of period 2n.

Period doubling occurs ad infinitum.

1.5 Scaling and universality

The period-doubling bifurcations obey a precise scaling law.

Define

µ∞ = value of µ when the iterates become aperiodic

= 0.892486 . . . (obtained numerically, for the logistic map).

There is geometric convergence:

µ∞ − µn ∝ δ−n for large n.

That is, each increment in µ from one doubling to the next is reduced in size
by a factor of 1/δ, such that

δn =
µn+1 − µn
µn+2 − µn+1

→ δ for large n.

The truly amazing result, however, is not the scaling law itself, but that

δ = 4.669 . . .

is universal, valid for any unimodal map with quadratic maximum.

“Unimodal” simply means that the map goes up and then down.

The quadratic nature of the maximum means that in a Taylor expansion of
f(x) about xmax, i.e.,

f(xmax + ε) = f(xmax) + εf ′(xmax) +
ε2

2
f ′′(xmax) + . . .

the leading order nonlinearity is quadratic, i.e.,

f ′′(xmax) 6= 0.
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(There is also a relatively technical requirement that the Schwartzian derivative of f must be

negative over the entire interval [2].)

This is an example of universality: if qualitative properties are present to
enable periodic doubling, then quantitative properties are predetermined.

Thus we expect that any system—fluids, populations, oscillators, etc.— whose
dynamics can be approximated by a unimodal map would undergo period
doubling bifurcations in the same quantitative manner.

How may we understand the foundations of this universal behavior?

Recall that

• the 2n-cycle generated by f 2n is superstable at µ = µ̄n;

• superstable fixed points always include x = 1/2; and

• all fixed points have the same slope.

Therefore an understanding of f 2n near its extremum at x = 1/2 will suffice
to understand the period-doubling cascade.

To see how this works, consider again the figures on p. 11.

The parabolic curve within the dashed square, for f 2
µ̄2

(x), looks just like
fµ̄1

(x), after

• reflection through x = 1/2, y = 1/2; and

• magnification such that the squares are equal size.

The superposition of the first 5 such functions (f, f 2, f 4, f 8, f 16) rapidly con-
verges to a single function.

13



Feigenbaum, Figure 8.

Thus as n increases, a progressively smaller and smaller region near f ’s max-
imum becomes relevant—so only the order of the maximum matters.

The composition of doubled functions therefore has a “stable fixed point” in
the space of functions, in the infinite period-doubling limit.

The scale reduction is based only on the functional composition

f 2n+1

= f 2n
(
f 2n
)

which is the same scale factor for each n (n large).

This scale factor converges to a constant. What is it?

The bifurcation diagram looks like

µ
1

µ
1

µ
2

µ
2

d
1

d
2

1/2

1

µ

x

Define dn = distance from x = 1/2 to nearest value of x that appears in the
superstable 2n cycle (for µ = µ̄n).
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From one doubling to the next, this separation is reduced by the same scale
factor:

dn
dn+1

' −α.

The negative sign arises because the adjacent fixed point is alternately greater
than and less than x = 1/2.

We shall see that α is also universal:

α = 2.502 . . .

1.6 Universal limit of iterated rescaled f ’s

How may we describe the rescaling by the factor α?

For µ = µ̄n, dn is the 2n−1 iterate of x = 1/2, i.e.,

dn = f 2n−1

µ̄n
(1/2)− 1/2.

For simplicity, shift the x axis so that x = 1/2→ x = 0. Then

dn = f 2n−1

µ̄n
(0).

The observation that, for n� 1,

dn
dn+1

' −α =⇒ lim
n→∞

(−α)ndn+1 ≡ rn converges.

Stated differently,

lim
n→∞

(−α)nf 2n

µ̄n+1
(0) must exist.

Our superposition of successive plots of f 2n suggests that this result may be
generalized to the whole interval.

Thus a rescaling of the x-axis describes convergence to the limiting function

g1(x) = lim
n→∞

(−α)nf 2n

µ̄n+1

[
x

(−α)n

]
.
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Here the nth interated function has its argument rescaled by 1/(−α)n and
its value magnified by (−α)n.

The rescaling of the x-axis shows explicitly that only the behavior of f 2n
µ̄n+1

near x = 0 is important.

Thus g1 should be universal for all f ’s with quadratic maximum.

• The top-left graph on p. 11, at µ̄1, is g1 for n = 0.

• The top-right graph, at µ̄2, is g1 for n = 1 (after rescaled by α).

g1 for n large looks like

Feigenbaum [1], Fig. 9

The function g1 is the universal limit of interated and rescaled f ’s. Moreover,
the location of the elements of the doubled cycles (the circulation squares) is
itself universal.

1.7 Doubling operator

We generalize g1 by introducing a family of functions

gi = lim
n→∞

(−α)nf 2n

µ̄n+i

[
x

(−α)n

]
, i = 0, 1, . . . (2)
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Note that

gi−1 = lim
n→∞

(−α)nf 2n

µ̄n+i−1

[
x

(−α)n

]
= lim

n→∞
(−α)(−α)n−1f 2n−1+1

µ̄n−1+i

[
1

(−α)

x

(−α)n−1

]
Set m = n− 1. Then

f 2n−1+1

= f 2m+1

= f 2m
(
f 2m
)

and

gi−1 = lim
m→∞

(−α)(−α)mf 2m

µ̄m+i


1

(−α)m
(−α)mf 2m

µ̄m+i

[
1

(−α)

x

(−α)m

]
︸ ︷︷ ︸

gi(
x
−α )


= −αgi

[
gi

(
x

−α

)]

We thus define the doubling operator T such that

gi−1(x) = T gi(x) = −αgi
[
gi

(
x

−α

)]
Taking the limit i→∞, we also define

g(x) ≡ lim
i→∞

gi(x)

= lim
n→∞

(−α)nf 2n

µ̄∞

[
x

(−α)n

]
We therefore conclude that g is a fixed point of T :

g(x) = T g(x) = −αg
[
g

(
x

−α

)]
. (3)

g(x) is the limit, as n→∞, of rescaled f 2n, evaluated for µ∞.

Whereas g is a fixed point of T , Tgi, where i is finite, interates away from g.

Thus g is an unstable fixed point of T .
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1.8 Computation of α

To determine α, first write

g(0) = −αg [g(0)] .

We must set a scale, and therefore set

g(0) = 1 =⇒ g(1) = −1/α.

There is no general theory that can solve equation (3) for g.

We can however obtain a unique solution for α by specifying the nature
(order) of g’s maximum (at zero) and requiring that g(x) be smooth.

We thus assume a quadratic maximum, and use the short power law expansion

g(x) = 1 + bx2.

Then, from equation (3),

g(x) = 1 + bx2 = −αg
(

1 +
bx2

α2

)

= −α

[
1 + b

(
1 +

bx2

α2

)2
]

= −α(1 + b)− 2b2

α
x2 +O(x4)

Equating terms,

α =
−1

1 + b
, α = −2b

which yields,

b =
−2±

√
12

4
' −1.366 (neg root for max at x = 0)

and therefore
α ' 2.73,

which is within 10% of Feigenbaum’s α = 2.5028 . . ., obtained by using terms
up to x14.
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1.9 Linearized doubling operator

We shall see that δ determines how quickly we move away from g under
application of the doubling operator T .

In essence, we shall calculate the eigenvalue that corresponds to instability
of an unstable fixed point.

Thus our first task will be to linearize the doubling operator T . δ will then
turn out to be one of its eigenvalues.

We seek to predict the scaling law

µ̄n − µ̄∞ ∝ δ−n,

now expressed in terms of µ̄i rather than µi.

We first expand fµ̄(x) around fµ̄∞(x):

fµ̄(x) ' fµ̄∞(x) + (µ̄− µ̄∞) δf(x),

where the incremental change in function space is given by

δf(x) =
∂fµ̄(x)

∂µ̄

∣∣∣∣
µ̄∞

Now apply the doubling operator T to fµ̄ and linearize with respect to δf :

Tfµ̄ = −αfµ̄
[
fµ̄

(
x

−α

)]
' −α [fµ̄∞ + (µ̄− µ̄∞) δf ] ◦

[
fµ̄∞

(
x

−α

)
+ (µ̄− µ̄∞) δf

(
x

−α

)]
= Tfµ̄∞ + (µ̄− µ̄∞)Lfµ̄∞ δf +O(δf 2)

where Lf is the linearized doubling operator defined by

Lf δf = −α
{
f ′
[
f

(
x

−α

)]
δf

(
x

−α

)
+ δf

[
f

(
x

−α

)]}
. (4)
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The first term on the RHS derives from an expansion like g[f(x)+δf(x)] ' g[f(x)]+g′[f(x)]δf(x).

A second application of the doubling operator yields

T
(
T (fµ̄)

)
= T 2fµ̄∞ + (µ̄− µ̄∞)LTfµ̄∞Lfµ̄∞ δf +O

(
(δf)2

)
.

Therefore n applications of the doubling operator produce

T nfµ̄ = T nfµ̄∞ + (µ̄− µ̄∞)LTn−1fµ̄∞ · · · Lfµ̄∞ δf +O
(
(δf)2

)
. (5)

For µ̄ = µ̄∞, we expect convergence to the fixed point g(x):

T nfµ̄∞ = (−α)nf 2n

µ̄∞

[
x

(−α)n

]
' g(x), n� 1.

Substituting g(x) into equation (5) and assuming, similarly, that LTfµ̄∞ ' Lg,

T nfµ̄(x) ' g(x) + (µ̄− µ̄∞) Lng δf(x), n� 1. (6)

We simplify by introducing the eigenfunctions φν and eigenvalues λν of Lg:

Lgφν = λνφν, ν = 1, 2, . . .

Write δf as a weighted sum of φν:

δf =
∑
ν

cνφν

Thus n applications of the linear operator Lg may be written as

Lng δf =
∑
ν

λnνcνφν.

Now assume that only one of λν is greater than one:

λ1 > 1, λν < 1 for ν 6= 1.

(This conjecture, part of the original theory, was later proven.)

Thus for large n, λ1 dominates the sum, yielding the approximation

Lng δf ' λn1c1φ1, n� 1.
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We can now simplify equation (5):

T nfµ̄(x) = g(x) + (µ̄− µ̄∞) · δn · a · h(x), n� 1

where
δ = λ1, a = c1, and h(x) = φ1.

Now note that when x = 0 and µ̄ = µ̄n,

T nfµ̄n(0) = g(0) + (µ̄n − µ̄∞) · δn · a · h(0).

Recall that x = 0 is a fixed point of f 2n
µ̄n

(due to the x-shift). Therefore

T nfµ̄n(0) = (−α)nf 2n

µ̄n
(0) = 0.

Recall also that we have scaled g such that g(0) = 1. We thus obtain the
Feigenbaum scaling law:

lim
n→∞

(µ̄n − µ̄∞) δn =
−1

a · h(0)
= constant!

1.10 Computation of δ

Recall that δ is the eigenvalue that corresponds to the eigenfunction h(x).

Then applying the linearized doubling operator (4) to h(x) yields

Lgh(x) = −α
{
g′
[
g

(
x

−α

)]
h

(
x

−α

)
+ h

[
g

(
x

−α

)]}
= δ · h(x).

Now approximate h(x) by h(0), the first term in a Taylor expansion about
x = 0.

Seting x = 0, we obtain

−α {g′ [g(0)]h(0) + h [g(0)]} = δ · h(0).

Note that the approximation

h(x) ' h(0) =⇒ h[g(0)] = h(1) ' h(0).
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Thus h(0) cancels in each term and, recalling that g(0) = 1,

− α [g′(1) + 1] = δ. (7)

To obtain g′(1), differentiate g(x) twice:

g(x) = −αg
[
g

(
−x
α

)]
g′(x) = −α

{
g′
[
g

(
−x
α

)]
·
(
−1

α

)
g′
(
−x
α

)}

g′′(x) =
−1

α

{
g′′
[
g

(
x

−α

)][
g′
(
−x
α

)]2

+ g′
[
g

(
−x
α

)]
g′′
(
−x
α

)}
Substitute x = 0. Note that

g′(0) = 0 and g′′(0) 6= 0

because we have assumed a quadratic maximum at x = 0. Then

g′′(0) =
−1

α
[g′(1)g′′(0)] .

Therefore
g′(1) = −α.

Substituting into equation (7), we obtain

δ = α2 − α .

This result derives from the crude approximation h(0) = h(1). Better approximations yield greater

accuracy [3].

Recall that we previously estimated α ' 2.73. Substituting that above, we
obtain

δ ' 4.72,

which is within 1% of the exact value δ = 4.669 . . ..
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1.11 Comparison to experiments

We have established the universality of α and δ:

reduced by δ

reduced by α

These quantitative results hold if a qualitative condition—the maximum of f
must be locally quadratic—holds.

At first glance this result may appear to pertain only to mathematical maps.
However we have seen that more complicated systems can also behave as if
they depend on only a few degrees of freedom. Due to dissipation, one may
expect that a one-dimensional map is contained, so to speak, within them.

The first experimental verification of this idea was due to Libchaber, in a
Rayleigh-Bénard system.

As the Rayleigh number increases beyond its critical value, a single convection
roll develops an oscillatory wave:

Ra=Ra c Ra>Ra c

probe

A probe of temperature X(t) is then oscillatory with frequency f1 and period
1/f1.
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Successive increases of Ra then yield a sequence of period doubling bifurca-
tions at Rayleigh numbers

Ra1 < Ra2 < Ra3 < . . .

Here are time series of the temperature fluctuations:

Libchaber et al. [4], Fig. 2

And here are the associated power spectra:

Libchaber et al. [4], Fig. 3 

Both images © EDP Sciences. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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The arrow points to the main frequency, i.e., the frequency with “period 1.”

Identifying Ra with the control parameter µ in Feigenbaum’s theory, Libcha-
ber et al. [4] found

δ ' 4.4

which is amazingly close to Feigenbaum’s prediction, δ = 4.669 . . ..

Such is the power of scaling and universality!
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