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1 Spectral analysis for dynamical systems

Power spectra provide one of the most important tools for analyzing the
behavior of dynamical systems, both theoretically and experimentally.

1.1 Fourier transforms

The precise oscillatory nature of an observed time series x(t) is usually not
identifiable from x(t) alone.

We may ask
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• How well-defined is the the dominant frequency of oscillation?

• How many frequencies of oscillation are present?

• What are the relative contributions of all frequencies?

The analytic tool for answering these and myriad related questions is the
Fourier transform.

1.1.1 Continuous Fourier transform

We first state the Fourier transform for functions that are continuous with
time.

The Fourier transform of a function f(t) is

F (ω) =
1√
2π

∫ ∞
−∞

f(t)e−iωtdt

Similarly, the inverse Fourier transform is

f(t) =
1√
2π

∫ ∞
−∞

F (ω)eiωtdω.

That the second relation is the inverse of the first may be proven, but we
save that calculation for the discrete transform, below.

1.1.2 Discrete-time signals

We are interested in the analysis of observational or experimental data, which
is almost always discrete. Thus we specialize to discrete Fourier transforms.

In modern data, one almost always observes a discretized signal

xj, j = {0, 1, 2, . . . , n− 1}
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We take the sampling interval—the time between samples—to be ∆t. Then

xj = x(j∆t).

The discretization process is pictured as

t
jj−1 j+1

x

x(t)

∆ t

A practical question concerns the choice of ∆t. To choose it, we must know
the highest frequency, fmax, contained in x(t).

The shortest period of oscillation is

Tmin = 1/fmax

Pictorially,

x

t

Tmin

We require at least two samples per period. Therefore

∆t ≤ Tmin

2
=

1

2fmax
.

1.1.3 Discrete Fourier transform

The discrete Fourier transform (DFT) of a time series xj, j = 0, 1, . . . , n− 1
is

x̂k =
n−1∑
j=0

xj exp

(
−i2πjk

n

)
k = 0, 1, . . . , n− 1

3



To gain some intuitive understanding, consider the range of the exponential
multiplier.

• k = 0⇒ exp(−i2πjk/n) = 1. Then

x̂0 =
∑
j

xj

Thus x̂0 is n times the mean of the xj’s.

This is the “DC” component of the transform.

Question: Suppose a seismometer measures ground motion. What would
x̂0 6= 0 mean?

• k = n/2⇒ exp(−i2πjk/n) = exp(−iπj). Then

x̂n/2 =
∑
j

xj(−1)j

= x0 − x1 + x2 − x3 . . .

Frequency index n/2 is clearly the highest accessible frequency.

• The frequency indices k = 0, 1, . . . , n/2 correspond to frequencies

fk = k/tmax,

i.e., k oscillations per tmax, the period of observation.
Index k = n/2 then corresponds to

fmax =
(n

2

)( 1

n∆t

)
=

1

2∆t

But if n/2 is the highest frequency that the signal can carry, what is the
significance of x̂k for k > n/2?

For real xj, frequency indices k > n/2 are redundant, being related by

x̂k = x̂∗n−k

where z∗ is the complex conjugate of z (i.e., if z = a+ ib, z∗ = a− ib).
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We derive this relation as follows. From the definition of the DFT, we have

x̂∗n−k =
n−1∑
j=0

xj exp

(
+i

2πj(n− k)

n

)

=
n−1∑
j=0

xj exp (i2πj)︸ ︷︷ ︸
1

exp

(
−i2πjk

n

)

=
n−1∑
j=0

xj exp

(
−i2πjk

n

)
= x̂k

where the + in the first equation derives from the complex conjugation, and
the last line again employs the definition of the DFT.

Note that we also have the relation

x̂∗−k = x̂∗n−k = x̂k.

The frequency indices k > n/2 are therefore sometimes referred to as negative
frequencies

1.1.4 Inverse discrete Fourier tranform

The inverse DFT is given by

xj =
1

n

n−1∑
k=0

x̂k exp

(
+i

2πjk

n

)
j = 0, 1, . . . , n− 1

We proceed to demonstrate this inverse relation.
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We begin by substituting the DFT for x̂k, using dummy variable j′:

xj =
1

n

n−1∑
k=0

n−1∑
j′=0

xj′ exp

(
−i2πj

′k

n

) exp

(
+i

2πkj

n

)

=
1

n

n−1∑
j′=0

xj′
n−1∑
k=0

exp

(
−i2πk(j′ − j)

n

)

=
1

n

n−1∑
j′=0

xj′ ×
{
n, j′ = j

0, j′ 6= j

=
1

n
(nxj)

= xj

The third relation derives from the fact that the previous
∑

k amounts to a
vanishing sum over the unit circle in the complex plane, except when j′ = j.

To see why the sum over the circle vanishes, consider the example of

j′ − j = 1 and n = 4.

The elements of the sum are then just the four points on the unit circle that
intersect the real and imaginary axes, i.e.,

3∑
k=0

exp

(
−i2πk(j′ − j)

4

)
= e0 + e−iπ/2 + e−iπ + e−i3π/2

= 1− i− 1 + i

= 0.

Finally, note that the DFT relations imply that xj is periodic in n, so that
xj+n = xj.

Consequently a finite time series is treated as if it were recurring:
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maxttmax 2
t

maxt−

x(t)

0

1.2 The autocorrelation function and the power spectrum

Assume that the time series xj has zero mean and that it is periodic, i.e.,
xj+n = xj.

Define the autocorrelation function ψ:

ψm =
n−1∑
j=0

x∗jxj+m

where
ψm = ψ(m∆t)

The autocorrelation function measures the degree to which a signal resembles
itself over time. Thus it measures the predictability of the future from the
past.

To gain some intuition:

• Consider, for example, m = 0 and real xj. Then

ψ0 =
n−1∑
j=0

x2j ,

which is n times the mean squared value of xj.

• Alternatively, if m∆t is much less than the dominant period of the data,
ψm should not be too much less than ψ0.

• Last, if m∆t is much greater than the dominant period of the data, |ψm|
is relatively small.
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A typical ψm looks like

Ψm

m

The power spectrum of a time series is the magnitude squared of its Fourier
transform:

|x̂k|2 =

∣∣∣∣∣
n−1∑
j=0

xj exp

(
−i2πjk

n

)∣∣∣∣∣
2

.

The Wiener-Khintchin theorem states that

power spectrum = Fourier transform of the autocorrelation.

In symbols,

|x̂k|2 =
n−1∑
m=0

ψm exp

(
−i2πkm

n

)
We also have the inverse relation

ψm =
1

n

n−1∑
k=0

|x̂k|2 exp

(
+i

2πkm

n

)
To prove the latter relation, we first substitute the inverse DFT for xj and
xj+m in the definition of ψm:

ψm =
n−1∑
j=0

x∗jxj+m

=
n−1∑
j=0

[
1

n

n−1∑
k=0

x̂∗k exp

(
−i2πkj

n

)][
1

n

n−1∑
k′=0

x̂k′ exp

(
i
2πk′(j +m)

n

)]
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We then change the order of the summations and simplify as follows:

ψm =
1

n2

n−1∑
k=0

n−1∑
k′=0

x̂∗kx̂k′ exp

(
i
2πmk′

n

) n−1∑
j=0

exp

(
i
2πj(k′ − k)

n

)
︸ ︷︷ ︸

= n, k′ = k

= 0, k′ 6= k

=
1

n

n−1∑
k=0

x̂∗kx̂k exp

(
i
2πmk

n

)
which is the Wiener-Khintchin relation.

By Fourier transforming ψm we also prove the inverse relation: the power
spectrum is the Fourier transform of the autocorrelation.

For a real time series {xj}, we can use the previously derived relation

x̂∗k = x̂n−k = x̂−k

to show that

|x̂k|2 = x̂kx̂
∗
k = x̂kx̂n−k = x̂∗n−kx̂n−k = |x̂n−k|2.

This redundancy results from the fact that neither the autocorrelation nor
the power spectrum contain information on any “phase lags” in either xj or
its individual frequency components.

Thus while the DFT of an n-point time series results in n independent quan-
tities (2 ×n/2 complex numbers), the power spectrum yields only n/2 inde-
pendent quantities.

One may therefore show that there are an infinite number of time series that
have the same power spectrum, but that each time series uniquely defines its
Fourier transform, and vice-versa.

Consequently a time series cannot be reconstructed from its power spectrum
or autocorrelation function.
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1.3 Power spectrum of a periodic signal

Consider a periodic signal

x(t) = x(t+ T ) = x

(
t+

2π

ω

)
Consider the extreme case where the period T is equal to the duration of the
signal:

T = tmax = n4t
The Fourier components are separated by

∆f =
1

tmax

i.e. at frequencies
0, 1/T, 2/T, . . . , (n− 1)/T.

1.3.1 Sinusoidal signal

In the simplest case, x(t) is a sine or cosine, i.e.,

x(t) = sin

(
2πt

tmax

)
.

What is the Fourier tranform? Pictorially, we expect

x(t)

tmax

t

x
k

2

∆k f = k/T1/T
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We calculate the power spectrum analytically, beginning with the DFT:

x̂k =
∑
j

xj exp

(
−i2πjk

n

)

=
∑
j

sin

(
2πj∆t

tmax

)
exp

(
−i2πjk

n

)

=
1

2i

∑
j

[
exp

(
i2πj∆t

tmax

)
− exp

(
−i2πj∆t
tmax

)]
exp

(
−i2πjk

n

)

=
1

2i

∑
j

[
exp

{
i2πj

(
∆t

tmax
− k

n

)}
− exp

{
−i2πj

(
∆t

tmax
+
k

n

)}]

= ± n
2i

when k =
±n∆t

tmax
.

Thus

|x̂k|2 =
n2

4
for k = ±1.

1.3.2 Non-sinusoidal signal

Consider now a non-sinusoidal yet periodic signal, similar to the relaxation
oscillations seen in the van der Pol limit cycle.

The non-sinusoidal character of such oscillations implies that it contains
higher-order harmonics, i.e., integer multiples of the fundamental frequency
1/T . Thus, pictorially, we expect

x
k

2

∆k f = k/T1/T

x(t)

tmax

t

2/T

3/T

harmonics

fundamental
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Now suppose tmax = pT , where p is an integer. The non-zero components of
the power spectrum must still be at frequencies

1/T, 2/T, . . . .

But since

∆f =
1

tmax
=

1

pT

the frequency resolution is p times greater. Contributions to the power spec-
trum would remain at integer multiples of the frequency 1/T , but spaced p

samples apart on the frequency axis.

1.3.3 tmax/T 6= integer

If tmax/T is not an integer, the (effectively periodic) signal looks like

x(t)

tt
max

We calculate the power spectrum of such a signal, assuming the sinusoidal
function

x(t) = exp

(
i
2πt

T

)
which has the discrete form

xj = exp

(
i
2πj∆t

T

)
.

The DFT is

x̂k =
n−1∑
j=0

exp

(
i
2πj∆t

T

)
exp

(
−i2πjk

n

)
.

Set

φk =
∆t

T
− k

n
.
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Then

x̂k =
n−1∑
j=0

exp (i2πφkj) .

Recall the identity
n−1∑
j=0

xj =
xn − 1

x− 1
.

Then

x̂k =
exp(i2πφkn)− 1

exp(i2πφk)− 1
.

The power spectrum is

|x̂k|2 = x̂kx̂
∗
k =

1− cos(2πφkn)

1− cos(2πφk)

=
sin2(πφkn)

sin2(πφk)
.

Note that

nφk =
n∆t

T
− k =

tmax

T
− k

is the difference between a DFT index k and the “real” non-integral frequency
index tmax/T .

Assume that n is large and k is close to that “real” frequency index such that

nφk =
n∆t

T
− k � n.

Consequently φk � 1, so we may also assume

πφk � 1.

Then

|x̂k|2 '
sin2(πφkn)

(πφk)2

= n2
sin2(πφkn)

(πφkn)2

∝ sin2 z

z2
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where

z = nπφk = π

(
n∆t

T
− k
)

= π

(
tmax

T
− k
)
.

Thus |x̂k|2 is no longer a simple spike. Instead, as a function of z = nπφk it
appears as

1

2sin z / z2

πφ
kπ 2π 3π−3π −2π −π 0 z=n

The plot gives the kth component of the power spectrum of ei2πt/T as a
function of π(tmax/T − k).

To interpret the plot, let k0 be the integer closest to tmax/T . There are then
two extreme cases:

1. tmax is an integral multiple of T:

tmax

T
− k0 = 0.

The spectrum is perfectly sharp:

x
k

2

kk
0

0 z

sin2z/z

2. tmax/T falls midway between two frequencies. Then

tmax

T
− k0 =

1

2
.

The spectrum is smeared:
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x
k

2

kk
0

0 z

sin2z/z

The smear decays like

1

(k − tmax/T )2
∼ 1

k2

1.3.4 Conclusion

The power spectrum of a periodic signal of period T is composed of:

1. a peak at the frequency 1/T

2. a smear (sidelobes) near 1/T

3. possibly harmonics (integer multiples) of 1/T

4. smears near the harmonics.

1.4 Quasiperiodic signals

Let y be a function of r independent variables:

y = y(t1, t2, . . . , tr).

y is periodic, of period 2π in each argument, if

y(t1, t2, . . . , tj + 2π, . . . , tr) = y(t1, t2, . . . , tj, . . . , tr), j = 1, . . . , r

y is called quasiperiodic if each tj varies with time at a different rate (i.e.,
different “clocks”). We have then

tj = ωjt, j = 1, . . . , r.
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The quasiperiodic function y has r fundamental frequencies:

fj =
ωj
2π

and r periods

Tj =
1

fj
=

2π

ωj
.

Example: The astronomical position of a point on Earth’s surface changes
due to

• rotation of Earth about axis (T1 = 24 hours).

• revolution of Earth around sun (T2 ' 365 days).

At long time scales, we also have changes in precession (26 Kyr), obliquity
(41 Kyr), and eccentricity (∼100 Kyr).

Considering just two oscillations (e.g, rotation and revolution), we can con-
ceive of such a function on a 2-D torus T 2, existing in a 3-D space.

T
1

T
2

Here we think of a disk spinning with period T1 while it revolves along the
circular path with period T2.

Such behavior can be conceived as a trajectory on the surface of a doughnut
or inner tube, or a torus T2 in R3.
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f
1

f
2

What is the power spectrum of a quasiperiodic signal x(t)? There are two
possibilities:

1. The quasiperiodic signal is a linear combination of independent periodic
functions. For example:

x(t) =
r∑
i=1

xi(ωit).

Because the Fourier transform is a linear transformation, the power spec-
trum of x(t) is a set of peaks at frequencies

f1 = ω1/2π, f2 = ω2/2π, . . .

and their harmonics

m1f1, m2f2, . . . (m1,m2, . . . positive integers).

2. The quasiperiodic signal x(t) depends nonlinearly on periodic functions.
For example,

x(t) = sin(2πf1t) sin(2πf2t) =
1

2
cos(|f1 − f2|2πt)−

1

2
cos(|f1 + f2|2πt).

The fundamental frequencies are

|f1 − f2| and |f1 + f2|.

The harmonics are

m1|f1 − f2| and m2|f1 + f2|, m1,m2 positive integers.
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The nonlinear case requires more attention. In general, if x(t) depends non-
linearly on r periodic functions, then the harmonics are

|m1f1 +m2f2 + . . .+mrfr|, mi arbitrary integers.

In what follows, we specialize to r = 2 frequencies, and forget about finite
∆f .

Each nonzero component of the spectrum of x(ω1t, ω2t) is a peak at

f = |m1f1 +m2f2|, m1,m2 integers .

There are two cases:

1. f1/f2 rational ⇒ sparse spectrum.

2. f1/f2 irrational ⇒ dense spectrum.

To understand this, rewrite f as

f = f2

∣∣∣∣m1
f1
f2

+m2

∣∣∣∣ .
In the rational case,

f1
f2

=
integer

integer
.

Then ∣∣∣∣m1
f1
f2

+m2

∣∣∣∣ =

∣∣∣∣ integer

f2
+ integer

∣∣∣∣ = integer multiple of
1

f2
.

Thus the peaks of the spectrum must be separated (i.e., sparse).

Alternatively, if f1/f2 is irrational, then m1 and m2 may always be chosen so
that ∣∣∣∣m1

f1
f2

+m2

∣∣∣∣ is not similarly restricted.

These distinctions have further implications.
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In the rational case,

f1
f2

=
n1
n2
, n1, n2 integers.

Since
n1
f1

=
n2
f2

the quasiperiodic function is periodic with period

T = n1T1 = n2T2.

All spectral peaks must then be harmonics of the fundamental frequency

f0 =
1

T
=
f1
n1

=
f2
n2
.

Thus the rational quasiperiodic case is in fact periodic, and some writers
restrict quasiperiodicity to the irrational case.

Note further that, in the irrational case, the signal never exactly repeats
itself.

One may consider, as an example, the case of a child walking on a sidewalk,
attempting with uniform steps to never step on a crack.

Then if x(t) were the distance from the closest crack at each step, it would
only be possible to avoid stepping on a crack if the ratio

step size

crack width

were rational.

1.5 Aperiodic signals

Aperiodic signals are neither periodic nor quasiperiodic.

Aperiodic signals appear random, though they may have a deterministic foun-
dation.
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An example is white noise, which is a signal that is “new” and unpredictable
at each instant, e.g.,

t

x(t)

Statistically, each sample of a white-noise signal is independent of the others,
and therefore uncorrelated to them.

The power spectrum of white noise is, on average, flat:

x
k

2

k

The flat spectrum of white noise is a consequence of its lack of harmonic
structure (i.e., one cannot recognize any particular tone, or dominant fre-
quency).

We proceed to derive the spectrum of a white noise signal x(t).

Rather than considering only one white-noise signal, we consider an ensemble
of such signals, i.e.,

x(1)(t), x(2)(t), . . .

where the superscipt denotes the particular realization within the ensemble.
Each realization is independent of the others.

Now discretize each signal so that

xj = x(j∆t), j = 0, . . . , n− 1

We take the signal to have finite length n but consider the ensemble to contain
an infinite number of realizations.
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We use angle brackets to denote ensemble averages.

The ensemble-averaged mean of the jth sample is then

〈xj〉 = lim
p→∞

1

p

p∑
i=1

x
(i)
j

Similarly, the mean-square value of the jth sample is〈
x2j
〉

= lim
p→∞

1

p

p∑
i=1

(
x
(i)
j

)2
Now assume stationarity: 〈xj〉 and

〈
x2j
〉

are independent of j. We take these
mean values to be 〈x〉 and

〈
x2
〉
, respectively, and assume 〈x〉 = 0.

Recall the autocorrelation ψm:

ψm =
n−1∑
j=0

xjxj+m.

By definition, each sample of white noise is uncorrelated with its past and
future. Therefore

〈ψm〉 =

〈∑
j

xjxj+m

〉

= n
〈
x2
〉
δm

where

δm =

{
1 m = 0
0 else

We obtain the power spectrum from the autocorrelation function by the
Wiener-Khintchine theorem:〈

|x̂k|2
〉

=
n−1∑
m=0

〈ψm〉 exp

(
−i2πmk

n

)

=
n−1∑
m=0

n
〈
x2
〉
δm exp

(
−i2πmk

n

)
= n

〈
x2
〉

= constant.
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Thus for white noise, the spectrum is indeed flat, as previously indicated:

x
k

2

k

A more common case is “colored” noise: a continuous spectrum, but not
constant:

x
k

2

k

In such (red) colored spectra, there is a relative lack of high frequencies. The
signal is still apparently random, but only beyond some interval ∆t.

The autocorrelation of colored noise is broader, e.g.,

Ψm

m
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