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1 Bifurcations in two dimensions

Reference: Strogatz, Chapter 8 [1].

We now extend our earlier discussion of bifurcations in 1-D to 2-D.

Unlike 1-D, where trajectories either stop or go to infinity, now we shall meet
the class of bifurcations that create limit cycles.

First let’s generalize our earlier results.

1.1 Saddle-node bifurcation

Recall that saddle-node bifurcations create or destroy fixed points. The 2-D
prototype is

ẋ = µ− x2

ẏ = −y
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All that we’ve done is add the equation for ẏ, which sends trajectories toward
the x-axis.

When µ < 0, there is a stable fixed point at

(x∗, y∗) = (
√
µ, 0)

and an unstable fixed point at

(x∗, y∗) = (−√µ, 0)

The phase portraits show their collision at µ = 0:

Strogatz [1], Fig. 8.1.1

The ghost is a kind of bottleneck: even after the fixed points disappear, the
fact that they had been present causes the flow to be slow.

To see how slow it is, we compute the time taken to move along the x-axis
in the one-dimensional case with µ < 0:

T =

∫ ∞

−∞

1

dx/dt
dx

=

∫ ∞

−∞

1

µ− x2
dx

=
π√
−µ

which diverges as µ → 0 from below. Exercise 4.3.1 in Strogatz shows how
to evaluate the integral.

While our prototypical example may appear special, it is really just a simple
example of a more general 2D system ẋ = f(x, y), ẏ = g(x, y) in which the
nullclines for ẋ = 0 and ẏ = 0 intersect like this:
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Strogatz [1], Fig. 8.1.2

Then as a control parameter is varied, the nullclines begin to separate, the
two fixed points must collide, and the system would behave as above.

1.2 Transcritical and pitchfork bifurcations

In analogy with the saddle-node case (and our earlier work in 1-D), the pro-
totypical cases are

ẋ = µx− x2, ẏ = −y transcritical

ẋ = µx− x3, ẏ = −y supercritical pitchfork

ẋ = µx+ x3, ẏ = −y subcritical pitchfork

The pitchfork bifurcations will be most useful for us. Let’s look at the super-
critical case.

For µ ≤ 0, there is a stable fixed point at the origin.

For µ > 0, two new stable fixed points appear, at

(x∗, y∗) = (±√µ, 0)

and the origin becomes an unstable saddle point:

Strogatz [1], Fig. 8.1.6
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1.3 Hopf bifurcations

Thus far our examples of bifurcations have all been expressed in terms of
collisions of fixed points on a line, even though the line may exist as a curve
in the plane. We now describe a bifurcation that can only exist in a phase
space of two or more dimensions.

In general, a stable fixed point may become unstable only if the real part of
one of the eigenvalues λ of the Jacobian becomes greater than zero as the
control parameter µ varies.

Recall that the eigenvalues λ solve

det J − λI = 0,

where J is the Jacobian and I is the identity matrix.

In 2-D, the resulting quadratic equation either has two real roots or two
complex conjugate roots.

So when a fixed point is stable, either both roots are real and negative, or
the roots are complex conjugates with negative real parts:

Strogatz [1], Fig. 8.2.1

In the saddle-node, transcritical, and pitchfork bifurcations, one of the purely
real roots passes through λ = 0 when the fixed point becomes unstable.

A Hopf bifurcation occurs in the case in which the complex conjugate roots
cross the imaginary axis. As in pitchfork bifurcations, there are two cases:
supercritical and subcritical.
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1.3.1 Supercritical Hopf bifurcation

The complex eigenvalues produce oscillatory solutions. One possibility is that
oscillations are damped for µ < µc and growing for µ > µc:

Strogatz [1], Fig. 8.2.2

This situation corresponds to a supercritical Hopf bifurcation.

We can write a simple model of the supercritical Hopf bifurcation in terms
of the radius r and angle θ in the 2-D phase space:

ṙ = µr − r3

θ̇ = ω + br2

Here µ controls the stability, ω gives the frequency of oscillations when r

is infinitesimal, and b determines the dependency of the frequency on the
amplitude of large oscillations.

Note the similarity of the r-equation with the supercritical pitchfork bifurca-
tion; the θ equation provides a kind of driving.

When µ ≤ 0, the origin r = 0 is a stable spiral. When µ > 0, the origin is an
unstable spiral:

Strogatz [1], Fig. 8.2.3

Note that for µ > 0 there is a stable limit cycle of size r =
√
µ.
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When µ = 0 the origin is still stable, but the amplitude of oscillations decays
slower than exponentially (since ṙ = −r2); this is another case of critical
slowing down.

The eigenvalues at the origin are (unsurprisingly, but see the calculation in
Strogatz)

λ = µ± iω
We can extract two important characteristics of supercritical Hopf bifurca-
tions from this prototypical form:

• The size of the limit cycle grows like
√
µ for µ near µc.

• The frequency of the limit cycle near µc is approximately ω = Imλ,
evaluated near at µc. The period is 2π/ω.

In our example, the eigenvalues cross the imaginary axis as a straight line
parallel to the real axis. However the paths are usually curved:

Strogatz [1], Fig. 8.2.4

Moreover the limit cycle is usually elliptical and not circular near µc.

1.3.2 Subcritical Hopf bifurcation

As with pitchfork bifurcations, there is also a subcritical variety of Hopf
bifurcations in which the stability of the fixed point and the limit cycle is
reversed. It has some very interesting properties.

Here’s the prototype:

ṙ = µr + r3 − r5

θ̇ = ω + br2
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Now the cubic term is destabilizing—it helps drive trajectories away from the
origin.

The phase portraits look like this:

Strogatz [1], Fig. 8.2.5

When µ < 0 there are two attractors: a stable limit cycle and a stable fixed
point. These two attractors are separated by an unstable limit cycle.

As µ→ 0 from below, the unstable limit cycle shrinks to the origin.

The subcritical Hopf bifurcation occurs at µ = 0. Here the origin becomes
unstable and the large amplitude limit cycle is the only attractor.

Consequently any solution near the origin is forced to grow immediately to a
large amplitude oscillation.

This strongly contrasts the supercritical case, in which the amplitude of the
limit cycle grows smoothly from zero, like µ1/2.

Here’s a pictorial summary of the supercritical and subcritical cases:

Izhikevich [2], Fig. 6.9
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Note that pictures of the subcritical case omit the large amplitude stable
limit cycle.

Note the similarity to the supercritical and subcritical pitchfork bifurcations
in one dimension we saw previously:

Strogatz [1], Fig. 3.4.2 Strogatz [1], Fig. 3.4.7

As in the subcritical pitchfork bifurcation, there is also the possibility of
hysteresis: once trajectories are on the large amplitude limit cycle for µ > 0,
they can’t be turned off by returning µ to zero.

It turns out the that the large-amplitude limit cycle disappears at µc = −1/4.
How does that happen?

1.4 Saddle-node bifurcation of cycles

We can answer that question by considering only the equation for ṙ. Plots of
ṙ for µ < µc, µ = µc, and µc < µ < 0 look like this:

Strogatz [1], Fig. 8.4.1
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Here the inclusion of the phase portraits makes clear that a saddle-node
bifurcation occurs at µ = µc.

Rather than just being a collision of an unstable and stable fixed point, here
we have a saddle node bifurcation of cycles: the unstable limit cycle collides
with the stable limit cycle, leaving only the stable fixed point.

In fact the origin remains stable all the time, while the large amplitude limit
cycle is created, seemingly from nothing, as µ increases past µc.

1.5 Spiking near limit cycles: excitability

Recall that the van der Pol equation

ẍ+ µ(x2 − 1)ẋ+ x = 0.

may be rewritten as

ẋ = y + x− x3

3

ẏ = −1

µ
x

We showed earlier, via a physical argument, that the origin or rest position
is always unstable, and that a limit cycle is instead stable.

We also showed that when µ� 1, the system exhibits relaxation oscillations.
The picture looked like this:

Strogatz [1], Figs. 7.5.1-2

Here the ẋ = 0 nullcline is the cubic. The ẏ = 0 nullcline is the y-axis (i.e.,
x = 0). Their intersection is at the unstable fixed point, the origin.
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We can make the fixed point stable, however, by tilting the ẏ = 0 nullcline.
Along with a few other modifications of only cosmetic consequence, the mod-
ified system reads

ẋ = −y + x− x3/3 + z

ẏ =
1

µ
(x+ a− by)

Comparing with the van der Pol equation, one obvious but inconsequential
difference is the change y → −y, which flips the cubic nullcline.

The ẏ = 0 nullcline is now the line

y =
x+ a

b

which not only provides a tilt of slope 1/b, but also adds a constant a/b. We
have also added a constant term z to the first equation.

This system is known as the Fitzhugh-Nagumo model [2–4]. It was introduced
as a simple model of an action potential, which describes the firing of pulses
or spikes of voltage, as is commonly observed in the behavior of neurons. The
variable x is then loosely related to the membrane potential and y is called
a recovery variable.

The Fitzhugh-Nagumo model was originally introduced as a simple way to
explain the behavior of the more detailed Hodgkin-Huxley model of the squid
giant axon [2].

Here we are interested in the model when the nullclines intersect at only one
point and that point is stable. Here’s how the flow appears in the phase
plane:
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Here the parameters a = 0.7, b = 0.8, µ = 10, and z = 0.
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If we were to increase z, the effect would be like stimulating the system with
a current. Eventually the system passes through a Hopf bifurcation, and the
system would exhibit a limit cycle very similar to the van der Pol limit cycle.

But note above that the flow in phase space when the fixed point is stable
looks very similar to what one would expect for a limit cycle.

Consequently, near the Hopf bifurcation, perturbations of the fixed point
above a threshold make the system behave as if the limit cycle existed, but
only for one cycle.

Here are four perturbations of the fixed point, two below the threshold and
two above the threshold:
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Above the threshold, the time series x(t) shows a single pulse or spike:
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Systems that exhibit such spiking behavior are called excitable. Models of
excitable systems have played a large role in neurophysiology. They may also
apply to other systems, including the climate and carbon cycle [5].

In the case we have considered here, for practical purposes the threshold for
an excitation is sharp, but mathematically it is smooth (as can be seen in
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the phase space trajectories above), and is thus called a quasithreshold.
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